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A B S T R A C T

A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain
MRI. These approaches achieve high accuracy when applied to research data sets but their performance on
real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance
of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results
to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse
of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data
from the Alzheimer’s Disease Neuroimaging Initiative data set. In the clinical set, the population of interest
was identified by exploiting the diagnostic codes from the 10th revision of the International Classification
of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms
of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided
diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the
confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect
or shortcut learning. When these biases were removed, the performance was very poor. In any case, the
performance was considerably lower than on the research data set. Our study highlights that there are still
considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
1. Introduction

Dementia is a world-wide syndrome that is becoming more and
more important due to population aging. T1-weighted (T1w) brain
magnetic resonance imaging (MRI) contributes to the positive diagnosis
of dementia by displaying typical spatial patterns of brain atrophy. A
variety of computer-aided diagnosis (CAD) systems using T1w brain
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1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (). As such, the investigators
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MRI data have been developed using machine learning and deep learn-
ing (Klöppel et al., 2008; Vemuri et al., 2008; Fan et al., 2008; Gerardin
et al., 2009; Cuingnet et al., 2011; Rathore et al., 2017; Wen et al.,
2020; Burgos et al., 2021).

So far, CAD systems have been mainly developed and validated
using research data sets due to their ease of access (many can directly
be downloaded from websites). Several data sets originating from re-
search studies such as the Alzheimer’s Disease Neuroimaging Initiative
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(ADNI)2, the Open Access Series Of Imaging Studies (OASIS)3, the
Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing
(AIBL)4, and the Frontotemporal lobar degeneration neuroimaging ini-
tiative (NIFD)5 are publicly available and contain various clinical and
imaging data, including T1w MRI brain images. They have pushed the
research on machine learning and deep learning for CAD using neu-
roimages: previously published works focusing on Alzheimer’s disease
(AD) have exploited the ADNI, OASIS or AIBL data sets (Punjabi et al.,
2019; Bidani et al., 2019; Spasov et al., 2019; Böhle et al., 2019; Farooq
et al., 2017; Wegmayr et al., 2018; Samper-González et al., 2018; Wen
et al., 2020; Bron et al., 2021; Cuingnet et al., 2011; Hinrichs et al.,
2009; Chupin et al., 2009; Misra et al., 2009), whereas those targeting
fronto-temporal dementia (FTD) used NIFD (Ma et al., 2020).

Even if all these data sets have proven extremely useful to propel
methodological research on machine learning applied to neurological
diseases, they are far from the everyday clinical routine for two main
reasons. First, in many works, the aim is to differentiate patients with
a particular, well-characterized, disease (most often AD), from healthy
controls. Such homogeneous diagnostic classes do not reflect the re-
ality of clinical routine. Some works focused on differential diagnosis
between different types of dementia but they still use research data
sets: Ma et al. (2020) classified patients with AD and FTD using ADNI
and NIFD, Koikkalainen et al. (2016) differentiated AD, FTD, dementia
with Lewy bodies and vascular dementia using the Amsterdam De-
mentia Cohort. Second, research images are usually acquired following
a standardized protocol whose aim is to guarantee data quality and
homogenization. This is obviously not the case in clinical routine.

In order to bring research advances to clinical practice, various
groups, including our own, have developed and validated CAD systems
using clinical data sets (Morin et al., 2020; Chagué et al., 2021; Platero
et al., 2019; Sohn et al., 2015; Klöppel et al., 2015). Nevertheless,
the participants, even though the MRI was indeed acquired as part
of clinical workup, were retrospectively selected to fit a well defined
task of interest. The images were also filtered to remove low quality
images. Moreover, the data come from highly specialized centers that
are not representative of the overall clinical practice (for instance rare
dementias and early-onset cases are over-represented). Furthermore,
the data often come from a single or few hospitals, thus they may
not reflect the full spectrum of heterogeneity. Finally, they often re-
strict themselves to diagnosis of patients with dementia. It is thus
unclear what their specificity is when dealing with MRI from patients
with other diagnoses. Therefore, the performance reported cannot be
considered to reflect those that would be obtained on real-life data.

Clinical data warehouses (CDW), which gather all images acquired
in large groups of hospitals, are a better representation of clinical
routine and they are thus an important tool for the translation of
research to the clinic. Images of a CDW are heterogeneous (i.e. different
sites, MRI sequences not harmonized) and they include a very wide
range of diagnoses (including not only patients with dementia but
also patients with other neurological or psychiatric diseases, as well as
patients who underwent a brain MRI for another indication) (Bottani
et al., 2022a; Wood et al., 2022).

The aim of this work is to experimentally study the performance of
machine learning methods to detect dementia patients in a CDW using
T1w brain MRI. Patients with dementia were labeled using diagnostic
codes assigned during the hospitalization period. The main machine
learning model was a linear support vector machine using gray matter
maps as features. It was then compared to several deep learning models.
We compared the performance obtained on a research data set to that
obtained on the present clinical data set. We studied how results in a
clinical data set may be biased by the characteristics of the training
data set (in particular by the injection of gadolinium and the presence
of images of different quality). We used an image translation approach
to change the appearance of images for which gadolinium was injected
in order to mitigate bias associated to this factor.
2

2. Materials

To compare the performance of CAD systems to detect dementia in
a research and a clinical setting, two data sets were used.

2.1. Research data set

The research data set used in this work was composed of subjects
from the ADNI database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment and
early Alzheimer’s disease.

We considered subjects from ADNI 1/2/Go/3 diagnosed as cognitive
normal (CN) or AD at baseline and only kept subjects whose diagnosis
did not change over time. This resulted in 800 subjects with a T1w MR
image at the first session including imaging data (CN: 410 subjects,
54.87% F, age 73.20 ± 6.15 in range [55.1, 89.6]; AD: 390 subjects,
44.0% F, age 74.88 ± 7.76 in range [55.1, 90.1]). Two hundred
subjects (100 CN and 100 AD) composed the independent test set
and the remaining subjects (310 CN and 290 AD) were used for the
training/validation of the models using a 5-fold cross-validation (CV).

2.2. Clinical routine data set

The clinical data set comes from the data warehouse of AP-HP
(Assistance Publique-Hôpitaux de Paris) which represents data from
39 hospitals of the Greater Paris area (Daniel and Salamanca, 2020).
The study was approved by the Ethical and Scientific Board of the
AP-HP data warehouse. All details regarding the ethics approval and
the procedure and regulations allowing the access and use of patient
data for research purposes are described in Supplementary material
Section 1. The data were only accessed within the AP-HP network and
it was strictly forbidden to export any kind of data.

All the data, both imaging and clinical, were pseudonymized by the
AP-HP data warehouse and they always remained within the hospital
network. The DICOM were pseudonymized as follows: Information
about the patient such as name, age, sex, weight as well as information
about the physicians who requested and analyzed the results of the
examination are erased, the examination date is shifted of a random
amount of time (from 1 to 10 years). Note that, for a given patient,
the same shift is applied to the examination date and to the date
of birth (part of clinical data in the ORBIS system, see below). As
the age is calculated as the difference between these two dates, this
pseudonymization process does not affect the computation of the age.
The images were not defaced. However, the identification from the
images would be very difficult because no 3D image viewer (with 3D
rendering or multiple plane visualization) was available within the plat-
form. Only a JupyterLab instance was available (Bottani et al., 2022a).
In order to visualize a snapshot of the image on a Jupyter Notebook,
we developed a tool available at: (https://github.com/SimonaBottani/
image_synthesis, commit number 98710ed).

2.2.1. Imaging and clinical data collection
Images from this clinical data warehouse are very heterogeneous

(Bottani et al., 2022a): They include 3D T1w brain MR images of
patients with a wide range of ages (from 18 to more than 90 years old)
and diseases, acquired with different scanners (more than 30 different
models). Imaging data were gathered in a central hospital picture
archiving and communication system (PACS) and images relevant to
our research project were copied to the research PACS where they
were pseudonymized. The selection process to obtain images of interest
is described in Bottani et al. (2022a): A neuroradiologist manually
selected all the DICOM header attributes (in particular the acquisition

http://adni.loni.usc.edu/
https://github.com/SimonaBottani/image_synthesis
https://github.com/SimonaBottani/image_synthesis
https://github.com/SimonaBottani/image_synthesis
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protocol, the series description and the body part) referring to a 3D
brain T1w MRI.

At the same time, clinical data corresponding to the patients of our
query are stored in a database managed by the ORBIS clinical informa-
tion system. Clinical data gather all the information connected to the
patients, i.e. date of birth, sex, diagnostic codes, medications, biological
tests, electronic health reports. As explained in Daniel and Salamanca
(2020), ORBIS has been installed progressively in the AP-HP hospitals
since 2009. Among all the patients aged more than 18 years old who
undertook a 3D T1w brain MRI examination at AP-HP (∼130.000
patients), only ∼25% were registered in ORBIS. Among them, 23,688
patients were hospitalized. Note that for non-hospitalized patients,
only sociodemographic data (sex and age) are available and not clin-
ical data. As for the imaging data, the data warehouse provided the
pseudonymized clinical data.

For our work, we were interested in two sociodemographic items
(age and sex) as well as one clinical item (diagnostic codes). Codes from
the 10th revision of the International Classification of Diseases (ICD-
10) (World Health Organization et al., 2007) were used to associate a
diagnosis to each T1w brain MRI. Images were labeled according to the
ICD-10 codes assigned to the visit corresponding to the acquisition of
the image. We defined a visit as a period of plus or minus three months
from the acquisition date of the image. As clinical data can be entered
by the medical staff at different moments during hospitalization, this
time window ensures that all pieces of information regarding brain
disorders related to the need of a brain MRI exam are collected.

In conclusion, the initial clinical data set of interest was composed
of 23,688 patients, which corresponds to 32,348 visits and 43,418 3D
T1w brain MR images.

2.2.2. Definition of the different diagnostic categories from ICD-10 codes
On average, 60 ICD-10 codes were assigned to each visit. Since

we did not know the reason of a patient’s hospitalization (which
may be different from the reason why they were prescribed an MRI
examination), we considered principal diagnoses, secondary diagnoses
and comorbidities at the same level. First, we identified all the ICD-
10 codes that could refer to dementia (denoted as D). Note that we
use the term ‘‘dementia’’ in a broad sense, i.e. we consider mild
cognitive impairment as belonging to this category. However, we re-
stricted this category to the two most common causes of dementia
(i.e. neurodegenerative and vascular dementias) and we did not include
the more atypical causes such as dementia in HIV disease (F02.4) or
psychotic disorder due to alcohol (F10.7), or dementia whose cause was
undefined (F03).

Then, we divided the remaining codes into two groups: ICD-10
codes referring to diseases (for instance cancer, demyelinating diseases,
stroke, hydrocephalus) that lead to lesions that visibily alter T1w brain
MRI (referred to as ‘‘no dementia but with lesions’’ - NDL) and ICD-
10 codes corresponding to diseases that, in principle, do not lead to
lesions visibly altering T1w brain MRI (referred to as ‘‘no dementia and
no lesions’’ - NDNL). We considered two different classification tasks in
which dementia patients had to be differentiated from these two classes
(NDL and NDNL), which have very different characteristics.

In Table 1, we list the three classes mentioned above (D, NDL,
NDNL). For each of them, we provide a brief description and a list
of all the associated ICD-10 codes. Sixteen diseases were associated to
the category dementia. Four families of diseases were associated to the
NDL category (which are defined by grouping different ICD-10 codes).
The NDNL category corresponded to all the other codes. According to
the standard structure of the ICD-10 codes, we considered just the first
letter and the first two numbers, indicating the category, to identify the
diseases belonging to the NDL category. The third number, indicating
the etiology, was used to identify the diseases corresponding to the
dementia category as we wanted to be more specific.
3

2.2.3. Selection of patients belonging to the dementia category
Dementia is the principal category we consider since our aim is to

study how well this category can be distinguished from the others. We
thus started by selecting patients labeled as dementia. In the workflow
displayed in Fig. 1 we report the different choices made to create this
population. For each step, we report the number of patients, visits and
images.

Starting from 2441 patients with at least one ICD-10 code in the
dementia category, corresponding to 2671 visits and 3633 images
(considering only 3D T1w brain MRI), the final population is composed
of 1255 patients, corresponding to 1255 visits and 1415 images. We
first excluded patients that had multiple ICD-10 codes belonging to the
dementia category at the same visit to have a unique label per visit.
We then excluded patients with an ICD-10 code belonging to the NDL
category with the aim that lesions visible on T1w brain MRI originate
only from dementia. Patients were further excluded if the ICD-10 code
in the dementia category was changing over time (i.e. over the different
visits) as this may be due to an error in coding. Patients aged more than
90 years old were excluded because there were very few patients above
this age across the different diagnostic groups (and thus it was not
possible to find patients with the same age/sex). Patients labeled F067
(mild cognitive disorder) aged less than 45 years old were excluded
because the diagnosis may correspond to a transient mild cognitive
impairment and not to a prodromal stage of dementia. Some images
were also excluded after the pre-processing step: If they had less than
40 DICOM slices or if they were labeled as straight reject by the quality
control step (see Section 3.1). This pre-processing step was applied to
all the images of the different categories.

2.2.4. Selection of patients belonging to the no dementia with lesions (NDL)
and no dementia and no lesions (NDNL) categories

The aim of this work is to assess whether patients with dementia can
be distinguished from patients with other brain diseases, no matter if
these diseases result in the presence (NDL category) or absence (NDNL
category) of lesions visible on T1w brain MRI. To define the cohorts for
the NDL and NDNL categories, we matched each patient belonging to
the dementia category with a patient in the NDL category and with a
patient in the NDNL category that had the same age (±1 year) and sex.
We first created the NDL cohort, which is composed of patients with
one of these four diseases potentially leading to brain lesions visible
on the T1w MRI: Cancer, stroke, demyelination and hydrocephalus
(see Table 1). We selected all the patients having at least one ICD-
10 code in this category, resulting in 3843 patients corresponding to
6598 visits and 9615 images. We then matched these patients with
those composing the dementia cohort following several criteria. For
each patient with dementia:

• We selected all the patients with the same age (±1 year) and the
same sex having at least one code in the NDL category.

• We excluded all the patients having different NDL codes at the
same visit.

• We considered only one visit for each patient when there were
multiple visits available with the same diagnosis. The visit was
selected randomly.

• Among all the patients with one visit matching these criteria, we
randomly selected one of them.

We iterated this selection process twice since some images were dis-
carded after the pre-processing steps (i.e. images with fewer than 40
DICOM slices or flagged as straight reject at the quality control step).
In total we matched 808 patients (corresponding to 808 visits and 978
images).

The NDNL class is composed of all the patients having no code in
the dementia nor NDL categories. For each patient with dementia:

• We selected all the patients with the same age (±1 year) and
the same sex having no ICD-10 code in the dementia nor NDL
categories.
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Table 1
Description of the three categories of interest with the corresponding ICD-10 codes. Details about dementia codes: ‘‘/’’
indicates that the two codes refer to the same diagnosis, ‘‘+’’ means that the diagnosis of dementia is defined by the
presence of both codes. ‘‘.*’’ in the NDL category indicates that all the sub-categories of the code were considered.

Category ICD-10 codes

D: Dementia associated to a neurodegenerative
disease or a vascular disease that causes atrophy
visible on T1w MRI.

∙ Dementia in AD with early onset (F00.0/G30.0)
∙ Dementia in AD with late onset (F00.1/G30.1)
∙ Dementia in AD, atypical or mixed type (F00.2/G30.8)
∙ Dementia in AD, unspecified (F00.9/G30.9)
∙ Dementia in Pick disease (F02.0/G31.0)
∙ Dementia in Creutzfeldt-Jakob disease (F02.1/A81.0)
∙ Dementia in Huntington disease (F02.2 + G10)
∙ Vascular dementia of acute onset (F01.0)
∙ Multi-infarct dementia (F01.1)
∙ Subcortical vascular dementia (F01.2)
∙ Mixed cortical & subcortical vascular dementia (F01.3)
∙ Other vascular dementia (F01.8)
∙ Vascular dementia, unspecified (F01.9)
∙ Mild cognitive disorder (F06.7)
∙ Dementia in Parkinson’s disease (F02.3 + G20)
∙ Lewy bodies dementia (G02.8 + G31.8)

NDL: No dementia but diagnosis that suggests
presence of lesions that modify the anatomical
structure of the brain visible on T1w MRI.

∙ Cancer (C70.*, C71.*, C72.*, D32.*, D33.*, D42.*)
∙ Demyelination (G35.*, G36.*, G37.*)
∙ Stroke (G45.*, G46.*)
∙ Hydrocephalus (G91.*)

NDNL: No dementia and no diagnosis suggesting
the presence of lesions on T1w brain MRI.

All the other codes
Fig. 1. Workflow describing the selection of patients belonging to the dementia category. For each selection step, we report the corresponding number of patients, visits and
images.
• In case of multiple visits for a patient, we randomly selected one
of them.

• Among all the patients with one visit matching these criteria, we
randomly selected one of them.

We iterated this selection process twice since some images were dis-
carded after the pre-processing steps. In total we matched 1144 patients
(corresponding to 1144 visits and 1343 images).
4

2.2.5. Final cohorts
The final cohorts were created by taking the intersection of the NDL

patients matching with dementia patients and of the NDNL patients
matching with dementia patients. This resulted in three cohorts each
of 756 patients for a total number of 2268 patients (corresponding to
2268 visits and 2823 images). Note that this number of 756 patients is
lower than the initial number of patients in the dementia class because
some of them could not be matched for age and sex with a patient of
the two other classes.
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Table 2
For each category, we report the number of patients and images, the age, the percentage of females, of images in tier 1/2 (i.e. images of good
and medium quality) and the percentage of images with gadolinium-based contrast agent. Results with ** mean that the distributions between
the overall population and a specific category were statistically significantly different (𝜒2 test corrected for multiple comparisons using the
Bonferroni procedure, corrected 𝑝-value <0.05). Age and sex were computed at the patient level, while the tiers and the gadolinium injection
were computed at the image level.

Category N patients N images Age (mean ± std [range]) Sex (%F) %Tier 1/2 With gadolinium

D 756 887 71.17 ± 11.58 [18,90] 50.34% 57.72%** 24.80%**
NDL 756 997 71.17 ± 11.58 [18,90] 50.34% 52.25% 63.59%**
NDNL 756 939 71.17 ± 11.58 [18,90] 50.34% 36.42%** 66.13%**
Total 2268 2823 71.17 ± 11.58 [18,90] 50.34% 48.71% 52.24%
i

3

g
w
t
a
i
p
a
t
w
t

In Table 2 we report the number of subjects, visits and images for
ach category. In addition, we report the percentage of females and the
verage age of the patients as well as the percentage of images with
nd without injection of gadolinium, and of images of good or medium
uality (tier 1/2). The presence of gadolinium and the quality of the
mages were determined through the automatic approach described
n Bottani et al. (2022a), which will be detailed in the Methods section.

.2.6. Training, validation and testing subsets
Before starting the experiments, we defined a test set by randomly

electing 20% of the patients of the dementia class and the correspond-
ng matched patients of the other two classes (NDL and NDNL). While
or the training/validation set, if there were several images at the same
isit all were kept to increase the number of training samples, for the
est set, we selected only one image per visit (the selection was made
andomly). This resulted in a test set composed of 152 patients/images
or each of the three classes (D, NDL, NDNL). The training/validation
et was composed of 604 patients and 719 images for D, 604 patients
nd 799 images for NDL, 604 patients and 756 images for NDNL.

We respected the same distribution of image quality and presence of
adolinium between the test and the training/validation sets. We also
hecked that the distribution of the ICD-10 codes between the test and
he training/validation sets among the dementia and NDL categories
as the same.

For each task, the images of the training/validation set were further
plit using a 5-fold CV. The splits were the same for all the experiments
nd the distribution of image quality and presence of gadolinium
espected the overall distribution.

.2.7. Training subsets
In order to study potential biases related to the presence of gadolin-

um or the quality of the images, we created different training subsets:

• 𝑇 172
no gado includes only matched dementia, NDL and NDNL patients

with images acquired without gadolinium injection. This results
in a training subset of 172 patients per class.

• 𝑇 181
tier 1/2 includes only matched dementia, NDL and NDNL patients

with images of good or medium quality (tier 1/2). This results in
a training subset of 181 patients per class.

• 𝑇 172 includes 172 patients per class with the same distribution of
image quality and gadolinium injection than the overall data set.

• 𝑇 88
no gado, tier 1/2 includes only matched dementia, NDL and NDNL

patients with images of medium or good quality acquired with-
out gadolinium injection. This results in a training subset of 88
patients per class.

• 𝑇 88
tier 1/2 includes 88 patients per class of only images of good or

medium quality.
• 𝑇 88 includes 88 subjects per class with the same distribution of

image quality and gadolinium injection as the overall data set.

. Methods

.1. Image pre-processing

The T1w MR images were converted from DICOM to NIfTI using the
5

oftware dicom2niix (version tag v1.0.20190902, commit number i
f54be46) (Li et al., 2016) and organized following the Brain Imaging
Data Structure (BIDS) standard (Gorgolewski et al., 2016). Images
with a voxel dimension smaller than 0.9 mm were resampled using
a 3rd-order spline interpolation to obtain 1 mm isotropic voxels. Two
different pre-processing pipelines were applied to the T1w MR images
in the BIDS format.

Most of the pre-processing was performed using Clinica (Routier
et al., 2021) (version tag 0.3.5, commit number 06fdbc5). The first
pre-processing consisted in applying the t1-linear pipeline of Clin-
ica, which is a wrapper of the ANTs software (Avants et al., 2014)
(version tag 2.3.1). Bias field correction was applied using the N4ITK
method (Tustison et al., 2010). An affine registration to MNI space was
performed using the SyN algorithm (Avants et al., 2008). N4ITK and
SyN algorithms are implemented in the ANTs software. The registered
images were further rescaled based on the min and max intensity
values. Images were then cropped to remove background resulting in
images of size 169 × 208 × 179, with 1 mm isotropic voxels (Wen et al.,
2020).

This pre-processing was used to assess the quality of the images
with an automatic approach proposed in Bottani et al. (2022a). The
automatic quality control (QC) approach first identified if a given image
was or not a straight reject (i.e. segmented or cropped image). If it
was not a straight reject, it was further labeled by the automatic QC
tool according to the tiers of quality, i.e. tier 1 (good quality), tier 2
(medium quality) or tier 3 (bad quality). In addition, the automatic
QC tool determined the presence or the absence of gadolinium-based
contrast agent.

The second pre-processing consisted in applying the t1-volume-
tissue- segmentation pipeline of Clinica (Routier et al., 2021;
Samper-González et al., 2018) to obtain probability gray matter maps
from the T1w MR images in the BIDS format. This wrapper of the
Unified Segmentation procedure implemented in SPM12 (Ashburner
and Friston, 2005) simultaneously performs tissue segmentation, bias
correction and spatial normalization. SPM12 was installed with the
Matlab standalone version. This results in probability gray matter maps
in the MNI space that have a size of 121 × 145 × 121, with 1.5 mm
sotropic voxels.

.2. Synthesis of images without gadolinium

To attenuate a potential bias due to the presence or absence of
adolinium, all the images pre-processed with the t1-linear pipeline
ent through the Att-U-Net described in Bottani et al. (2022b) that

ranslates contrast-enhanced images into non-contrast-enhanced im-
ges. The code can be found at: https://github.com/SimonaBottani/
mage_synthesis (commit number 98710ed). To prevent introducing a
otential bias because of differences in smoothness between the real
nd synthetic images, all the images were fed to the network no matter
he initial presence or absence of gadolinium. The synthetic images
ere then pre-processed with the
1-volume-tissue-segmentation pipeline, as done for the real
mages.

https://github.com/SimonaBottani/image_synthesis
https://github.com/SimonaBottani/image_synthesis
https://github.com/SimonaBottani/image_synthesis
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3.3. Machine learning models used for classification

3.3.1. Linear support vector machine
A linear support vector machine (SVM) using probability gray mat-

ter maps as features was used for the binary classification tasks. We
followed the implementation of Samper-González et al. (2018) using
Scikit-learn (Pedregosa et al., 2011). The Gram matrix 𝐾 = (𝑘(𝐱𝑖, 𝐱𝑗 ))𝑖,𝑗

as pre-calculated using a linear kernel 𝑘 for each pair of images (𝐱𝑖, 𝐱𝑗)
or the provided subjects and was used as input for the generic SVM.

hen using a pre-computed Gram matrix, computing time depends on
he number of subjects, and not on the number of features and it can
peed up calculations. The implementation of the linear SVM models,
ncluding the computation of the Gram Matrix and the integration
ith the features pre-processed with Clinica can be found here: https:
/github.com/aramis-lab/AD-ML (branch 2018_NeuroImage, commit
umber 4d07049). We optimized the penalty parameter 𝐶 of the error
erm. The optimal value of 𝐶 was chosen using nested CV, with an inner
-fold (k=10). For each fold of the outer CV, the value of 𝐶 that led to
he highest balanced accuracy in the inner k-fold was selected. The test
et was never used for hyper-parameter optimization and was only used
o estimate the final performance results.

.3.2. Convolutional neural networks
We used three different 3D convolutional neural networks (CNN)

or the binary classification tasks to have a comparison with the linear
VM. Note that the input of the CNNs are the images pre-processed with
1-linear as this procedure was validated in Wen et al. (2020).

The three 3D CNN architectures considered in the paper are de-
ominated as follows: Conv5_FC3, ResNet, InceptionNet. The first is
omposed of five convolutional layers and three fully connected layers
s implemented in Wen et al. (2020), Thibeau-Sutre et al. (2022b), the
esNet contains residual blocks inspired from Jónsson et al. (2019) and

he InceptionNet is a modified version of the Inception architecture
mplemented by Szegedy et al. (2016). The ResNet and the Inception-
et were implemented and used for the work of Couvy-Duchesne et al.

2020). All the details of the architectures can be found in Bottani et al.
2022a). The deep learning models developed for classification are
vailable within the ClinicalDL (Thibeau-Sutre et al., 2022b) software,
hich repository is https://github.com/aramis-lab/clinicadl (version

ag 0.0.2, commit number 8286513) and within the repository https:
/github.com/aramis-lab/pac2019 (commit number 200681e).

The models were trained using the cross entropy loss. We used the
dam optimizer with a learning rate of 10−5 for the ResNet and of 10−4

or the InceptionNet and Conv5_FC3 architectures. We implemented
arly stopping and all the models were evaluated with a maximum of
0 epochs. The batch size was set to 2. The model with the lowest
oss, determined on the validation set, was saved as final model. As
entioned above, the test set was never used for hyper-parameter

ptimization and was only used to estimate the final performance
esults. Implementation was done using Pytorch through the ClinicaDL
latform (Thibeau-Sutre et al., 2022b).

.4. Computing environment

All computations were performed using the computing infrastruc-
ure of the hospital data warehouse running the operating system Linux
buntu 14.04 LTS.

. Results

We first classified AD vs CN subjects using the ADNI data set in
rder to obtain baseline results on a research data set. Then we per-
ormed two tasks using the clinical data sets: dementia vs no dementia
ith lesions (D vs NDL) and dementia vs no dementia no lesions (D vs
6

DNL). a
.1. Performance in a research data set

Results for classification of AD vs CN on ADNI are reported in
able 3. The best balanced accuracy was reached using the linear
VM with gray matter maps as input (86.4%), followed by the ResNet
85.3%), the Conv5_FC3 (84.1%), and the InceptionNet (82.1%) using
inimally pre-processed T1w MR images as input. These results are

n line with the literature (Samper-González et al., 2018; Wen et al.,
020) even though higher performance has been reported with more
ophisticated approaches (e.g. Lian et al., 2018; Li et al., 2018; Hett
t al., 2018; Coupé et al., 2012; Liu et al., 2012; Tong et al., 2014; Suk
t al., 2017; Basaia et al., 2019; Wee et al., 2019; Hett et al., 2021).
ote that the objective of our work was not to improve the state of the
rt of classification of AD on research data but to have a baseline for
urther comparison with results on clinical routine data. This is why
e used standard classification approaches. As training linear SVMs is

ess computationally expensive than CNNs and since the objective of
ur work is not to compare different machine learning approaches, for
he subsequent experiments we will mostly report results obtained with
he linear SVM.

.2. Performance in the clinical data set

Classification results on the clinical data set (for both D vs NDNL
nd D vs NDL) using all the training samples available are reported
n Table 4. We observed an important drop in balanced accuracy
ompared with that obtained on the research data set: 68.8% for D vs
DNL and 73.1% for D vs NDL compared with 86.4% for AD vs CN

n ADNI. This may be due to the heterogeneity of the classes in the
linical data set, where many diagnoses coexist, but also to differences
n image characteristics.

.2.1. Influence of gadolinium injection and image quality on the classifi-
ation performance

As shown in Table 2, the proportions of images with and without
adolinium injection and of good/medium vs low quality differ in
he dementia, NDL and NDNL categories. In the dementia class, 25%
mages were acquired with gadolinium injection. In NDL and in NDNL,
his proportion is around 65%. In the dementia and NDL categories,
he majority of the images are of good/medium quality (58% and 52%,
espectively), while in the NDNL category only 36% of images are of
ood/medium quality. Since these acquisition characteristics are corre-
ated with the diagnostic class, it is possible that the classifier uses this
nformation characteristic, thereby biasing the performance upwards,
phenomenon often referred to as the Clever Hans effect (Lapuschkin

t al., 2019) or shortcut learning (Geirhos et al., 2020).
To test this hypothesis, we used the training subsets 𝑇 172

no gado, 𝑇 181
tier 1/2

nd 𝑇 172. The order of magnitude of patients per class among the
raining subsets is equivalent, meaning that differences observed in
he classification score should not depend on the training sample size
ut on the characteristics of the training subset. We assume that if
adolinium or image quality has no impact, the performance will not
ary when using the different training subsets. On the other hand, if
esults differ between training subsets, this will be the sign of a Clever
ans effect. Results of these experiments are displayed in Table 5.
ote that the test set never changed across all the experiments of the
ork: It is composed of 152 patients/images per class. The balanced
ccuracy when using 𝑇 172 was substantially higher than when using
172
no gado or 𝑇 181

tier 1/2. This indicates that results are biased by the presence
f gadolinium and by the differences in image quality. The classifiers
xploit these characteristics to determine the diagnosis.

The training subset 𝑇 172
no gado still contains images of different quality

nd 𝑇 181
tier 1/2 images with and without gadolinium. The classifier may

hus still be exploiting biases in the image characteristics. To evaluate
he performance of the classifier using a training data set without

ny of these two potential biases, we used the training subset called

https://github.com/aramis-lab/AD-ML
https://github.com/aramis-lab/AD-ML
https://github.com/aramis-lab/AD-ML
https://github.com/aramis-lab/clinicadl
https://github.com/aramis-lab/pac2019
https://github.com/aramis-lab/pac2019
https://github.com/aramis-lab/pac2019
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Table 3
Dementia classification performance (AD vs CN) on the research data set (ADNI). Results were obtained with
different machine learning models: a linear SVM using as input gray matter maps and three CNN models
(Conv5_FC3, ResNet and InceptionNet) using as input minimally pre-processed T1w MR images. We present
results on the independent test set using the average performance and the empirical standard deviation
(SD) of the five models corresponding to the five folds. Note that the empirical SD just provides a rough
estimate of the variability of the performance across folds but is not an unbiased estimator of the SD of the
performance.

AD vs CN

Metric SVM Conv5_FC3 ResNet InceptionNet

Balanced accuracy 86.80 ± 0.40 84.10 ± 1.59 85.30 ± 1.03 82.10 ± 1.77
Sensitivity 82.80 ± 0.40 79.80 ± 4.45 83.00 ± 4.52 75.80 ± 8.68
Specificity 90.80 ± 0.40 88.40 ± 7.26 87.60 ± 4.67 88.40 ± 5.16
Table 4
Dementia classification performance (D vs NDNL and D vs NDL)
in the clinical data set. Results were obtained with a linear SVM
using as input gray matter maps.

Metric D vs NDNL D vs NDL

Balanced accuracy 68.75 ± 0.36 73.09 ± 0.32
Sensitivity 66.97 ± 0.64 75.92 ± 0.89
Specificity 70.53 ± 0.49 70.26 ± 0.49

Table 5
Influence of gadolinium injection and image quality on the classification performance.
Results were obtained for the D vs NDNL and D vs NDL classification tasks with a
linear SVM using as input gray matter maps and trained on different clinical data
subsets (𝑇 172

no gado, 𝑇 181
tier 1/2 and 𝑇 172).

A. D vs NDNL

Metric 𝑇 172
no gado 𝑇 181

tier 1/2 𝑇 172

Balanced accuracy 60.33 ± 0.26 61.32 ± 2.83 68.16 ± 0.38
Sensitivity 52.76 ± 0.26 79.87 ± 2.72 73.95 ± 2.41
Specificity 67.89 ± 0.26 42.76 ± 12.70 62.37 ± 2.18

B. D vs NDL

Metric 𝑇 172
no gado 𝑇 181

tier 1/2 𝑇 172

Balanced accuracy 69.74 ± 0.55 64.61 ± 1.74 72.30 ± 0.48
Sensitivity 85.13 ± 0.79 45.53 ± 4.62 66.45 ± 1.32
Specificity 54.34 ± 1.84 83.68 ± 1.47 78.16 ± 1.92

𝑇 88
no gado, tier 1/2 and compared it with using the training subset 𝑇 88

aving the same training size. Results are reported in Table 6. For
oth tasks, there was a dramatic drop in balanced accuracy, down from
bout 70% to random (about 50%). Therefore, the classifier is only
sing the Clever Hans effect and not relevant diagnostic information.
n other words, when it cannot exploit biases in image characteristics,
he trained classifier is not better than a random classifier.

We aimed to assess if these observations still hold for another
achine learning approach, specifically a CNN-based model. We thus

onducted the same analysis using the Conv5_FC3 network. Results are
eported in Table S1 in the supplementary material. We observed a 7
ercent point increase for the D vs NDNL task and a 13 percent point
ncrease for the D vs NDL task when using the biased data set. This
ncrease is lower than that obtained for the SVM but still very large.
ompared with the SVM, the CNN yielded a higher balanced accuracy
n the 𝑇 88

no gado, tier 1/2 data subset (for D vs NDNL 58.62 ± 1.60 and
or D vs NDL 55.53 ± 3.71). Nevertheless, the performance remains
xtremely poor when the training cannot exploit the Clever Hans effect.

.2.2. Classification performance obtained after gadolinium removal using
mage translation

In our previous work (Bottani et al., 2022b), we proposed a deep
earning-based image translation approach to remove the visual effect
f gadolinium from contrast-enhanced T1w MR images. In the present
aper, we assess whether this approach could reduce the classification
ias due to gadolinium injection. We created a training subset com-
osed of 88 synthetic images obtained from images of good/medium
7

Table 6
Joint influence of gadolinium injection and image quality on
the classification performance. Results were obtained for the D
vs NDNL and D vs NDL classification tasks with a linear SVM
using as input gray matter maps and trained on two clinical data
subsets (𝑇 88

no gado, tier 1/2 and 𝑇 88).

A. D vs NDNL

Metric 𝑇 88
no gado, tier 1/2 𝑇 88

Balanced accuracy 51.51 ± 2.54 69.47 ± 2.37
Sensitivity 6.71 ± 12.44 71.97 ± 2.26
Specificity 96.32 ± 7.37 66.97 ± 2.51

B. D vs NDL

Metric 𝑇 88
no gado, tier 1/2 𝑇 88

Balanced accuracy 50.00 ± 0.00 73.03 ± 1.79
Sensitivity 40.00 ± 48.99 66.58 ± 4.51
Specificity 60.00 ± 48.99 79.47 ± 1.13

quality acquired with and without gadolinium injection that all went
through the gadolinium removal Att-U-Net, as described in Section 3.2.
If the gadolinium is successfully removed, training with this subset
should be equivalent to training with the 𝑇 88

no gado, tier 1/2 subset that
includes only images without gadolinium. Results of these experiments
are reported in Table 7. The balanced accuracy is equivalent in both
cases, meaning that the effect of gadolinium has been removed using
the synthetic images. Nevertheless, it is not better than chance indicat-
ing, again, that the classifier cannot learn image characteristics which
are relevant to the diagnostic classification.

However, it is possible that the low performance is due to the
small size of the training set. We therefore used the image translation
method to build a larger clinical data set composed only of images of
good/medium quality and where the visual appearance of gadolinium
has been removed. This data set was denoted Synthetic 𝑇 181

tier 1/2. Using
this training set, we assessed both the linear SVM (using gray matter
maps) and the ResNet (with minimally pre-processed T1w MRI as
input). Results appear in Table 8. We found an increased performance
using this synthetic, larger, training set. The ResNet obtained a slightly
higher performance than the SVM. It is thus possible that homoge-
nizing the data set using image translation allows removing bias and
increasing classification performance. Nevertheless, we cannot directly
demonstrate this in the absence of a training set of the same size
containing only images without gadolinium and of higher quality. It is
thus possible that visually imperceptible differences still exist between
the images that were initially acquired with gadolinium and those
without, and that the classifiers exploit these differences.

4.2.3. Classification performance when training on a research data set and
testing on the clinical data set

Another way to ensure that gadolinium or poor image quality is not
exploited by the classifier is to train using the research data set (ADNI
contains only images without gadolinium and of good quality). We both
trained a linear SVM and a ResNet. Results appear in Table 9. No matter

the task, the linear SVM trained on research data led to a slightly higher
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Table 7
Classification performance obtained after gadolinium removal using image translation,
training on a set of 88 patients. Results were obtained for the D vs NDNL and D vs
NDL classification tasks with a linear SVM using as input gray matter maps and trained
on three clinical data subsets (𝑇 88

tier 1/2, 𝑇 88
tier 1/2, 𝑇 88

no gado, tier 1/2).

A. D vs NDNL

Metric 𝑇 88
tier 1/2 Synthetic 𝑇 88

tier 1/2 𝑇 88
no gado, tier 1/2

Balanced accuracy 60.26 ± 5.41 51.71 ± 1.15 51.51 ± 2.54
Sensitivity 58.68 ± 30.44 75.66 ± 34.75 6.71 ± 12.44
Specificity 61.84 ± 22.63 27.76 ± 34.98 96.32 ± 7.37

B. D vs NDL

Metric 𝑇 88
tier 1/2 Synthetic 𝑇 88

tier 1/2 𝑇 88
no gado, tier 1/2

Balanced accuracy 68.29 ± 3.55 54.08 ± 5.19 50.00 ± 0.00
Sensitivity 69.34 ± 7.71 52.50 ± 41.54 40.00 ± 48.99
Specificity 67.24 ± 14.43 55.66 ± 45.57 60.00 ± 48.99

Table 8
Classification performance obtained after gadolinium removal
using image translation, training on a set of 181 patients. Results
were obtained a linear SVM with probability gray matter maps
or a ResNet with minimally pre-processed T1w MR images.

A. D vs NDNL

Metric SVM ResNet

Balanced accuracy 61.91 ± 1.34 63.22 ± 3.47
Sensitivity 81.32 ± 2.45 52.24 ± 10.65
Specificity 42.50 ± 4.59 74.21 ± 7.22

B. D vs NDL

Metric SVM ResNet

Balanced accuracy 64.61 ± 1.74 67.50 ± 0.98
Sensitivity 45.53 ± 4.62 64.47 ± 10.47
Specificity 83.68 ± 1.47 70.53 ± 10.05

Table 9
Classification performance when training on a research data set
and testing on a clinical data set. Results were obtained for the
D vs NDNL and D vs NDL classification tasks using a linear SVM
with probability gray matter maps or a ResNet with minimally
pre-processed T1w MR images.

A. D vs NDNL

Metric SVM ResNet

Balanced accuracy 64.08 ± 0.82 61.84 ± 4.07
Sensitivity 62.76 ± 0.53 60.92 ± 8.28
Specificity 65.39 ± 1.29 62.76 ± 6.55

B. D vs NDL

Metric SVM ResNet

Balanced accuracy 69.47 ± 0.32 61.78 ± 4.35
Sensitivity 62.76 ± 0.53 60.92 ± 8.28
Specificity 76.18 ± 0.49 62.63 ± 4.43

balanced accuracy than the ResNet. Note that the accuracy was also
slightly higher than when training with synthetic data (Table 8). In any
case, one should keep in mind that such classification performance is
too low to be acceptable in clinical practice.

5. Discussion

In this paper, we studied the performance of machine learning
approaches for computer-aided detection of dementia based on T1w
MRI using a real-life clinical routine cohort coming from a hospital data
warehouse. To the best of our knowledge, this is the first paper of this
kind since previous works have used either research data sets or clinical
data from specialized centers that have been carefully selected and
are thus not representative of daily clinical routine. We demonstrated
that the classifiers trained on clinical routine data are highly biased
by image acquisition specificities such as image quality or injection of
8

W

gadolinium. When such biases are removed, the performance is very
poor. Models trained on research data performed poorly and their
accuracy is unacceptably low for clinical use.

As a research topic, machine learning for diagnosis of Alzheimer’s
disease is now 15 year old (Klöppel et al., 2008; Vemuri et al., 2008;
Gerardin et al., 2009; Fan et al., 2008). While high performance has
been consistently reported, most of these works use research data sets
for training and validation (Samper-González et al., 2018; Falahati
et al., 2014; Manera et al., 2021; Bron et al., 2021). There are a few
papers using clinical routine data sets but they cannot be considered
representative of daily clinical routine as they come from a single or
a handful of highly specialized centers and carefully select data using
strict criteria regarding data quality (Morin et al., 2020; Platero et al.,
2019; Sohn et al., 2015; Klöppel et al., 2015). It is thus unclear how
such methods would perform on real-life clinical MRI and ultimately
translate to the clinic.

The aim of our work was to provide a proof of concept of the
abilities of machine learning algorithms to work with heterogeneous
data sets as the clinical routine data sets. It is a first attempt to better
understand how these models behave when the acquisition setting is
very different from that of research studies. Our experimental set-
tings does not imply that the tasks the classifiers need to tackle are
representative of realistic clinical diagnostic scenarios. Indeed, in the
clinic, there is a lot of prior knowledge available to the radiologist,
such as the reason for referral or the patient’s history, that we did
not consider. The main results of our work are three-fold: (i) the
performance of such CAD methods is considerably lower on clinical
routine data compared with research data sets; (ii) on clinical routine
data, classifiers were heavily biased by irrelevant characteristics and
when such biases were removed, the performance was particularly
low; (iii) training on research data and testing on clinical data al-
lowed reaching slightly higher accuracies but the overall performance
remained low. More specifically, when both training and testing on
research data, we obtained high classification performance (around
87% balanced accuracy) which is in line with the literature. When
training/testing on clinical data, the performance dropped by more
than 15 percent points and, more importantly, was heavily biased by
irrelevant characteristics. When such confounders were removed, the
performance was very poor. This was the case for both the SVM and a
CNN model. The CNN achieved slightly better results than the SVM in
the absence of confounders but the accuracy was still very low. Training
on the research data set and testing on the clinical routine data set
allowed removing this source of bias but the performance remained
poor (decrease of at least 19 percent points of balanced accuracy). Thus,
classifiers that lead to high classification performance in a research
framework do not necessarily generalize to clinical data sets. Part of
this drop in accuracy could be explained by an increase in the difficulty
of the classification task between the research and clinical setups. In
the research setup, the AD and CN classes are quite homogeneous,
while in the clinical setup, the D, NDL and NDNL classes are much
more heterogeneous as each category corresponds to several diagnoses.
However, this may not be the only factor leading to this performance
difference and more analyses were performed to dissect these results.

In the clinical routine data set, there was a clear correlation between
the diagnostic groups on the one hand and image quality and presence
of gadolinium on the other hand (∼65% of images with gadolinium in
NDL and NDNL and 25% in D; 37% of images of good or medium qual-
ity in NDNL, and ∼55% in D and NDL). We hypothesized that models
trained on such data could exploit this bias. To assess this, we trained
different models changing the characteristics of the training subsets: We
used training subsets having only images without gadolinium (𝑇 172

no gado)
r images of good/medium quality (𝑇 181

tier 1/2) or both (𝑇 88
no gado, tier 1/2)

nd we compared their performance with a training subset of the
ame sample size but having the same proportions of images with
adolinium and of low quality than the whole data set (𝑇 172 and 𝑇 88).

e showed that the performance of the classifier was heavily biased by
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these image characteristics, a phenomenon known as the Clever Hans
effect (Lapuschkin et al., 2019) or shortcut learning (Geirhos et al.,
2020). Such phenomenon has been previously described in different
medical image computing applications (Lapuschkin et al., 2019; Wallis
and Buvat, 2022). All these sub-analyses were performed using a sub-
data set not representative of the original data set but they were carried
out to better understand the behavior of the models.

Of course, it does not mean that other machine learning methods
could not achieve higher performance using larger, unbiased, clinical
routine data sets but it was not the case in our work.

We aimed to remove the bias coming from gadolinium injection
by applying an image translation Att-U-Net model proposed in Bottani
et al. (2022b). On the smaller set of 88 patients, its performance was
close to chance and similar to that of a classifier trained on images
without gadolinium and of good/medium quality. This approach still
has some limitations: It may blur the images, limiting the information
related to the diseases that the models could detect. When using a larger
data set of synthetic images, we obtained higher accuracies. This poten-
tially indicates that the use of image translation allows removing some
of the biases while improving performance. Nevertheless, we cannot
strictly assert this because there may be residual, visually imperceptible
differences between images that were acquired with gadolinium and
those without. Overall, this stresses the importance of developing image
homogenization techniques for training unbiased classifiers.

Our results contribute to a better understanding of the broader
issue of generalizability of machine learning systems to clinical routine
data. Such issue is mentioned as one of the major challenges faced by
machine learning for medical imaging in Varoquaux and Cheplygina
(2022). In particular, the authors highlight the discrepancy between
results that can be achieved in research benchmarks and when the
tool is applied to more realistic clinical data. Similarly to our results,
it has been found that machine learning systems may in fact be ex-
ploiting confounders in different settings. Some examples of exploited
confounders include site and clinical department (Zech et al., 2018),
magnetic field strength (Thibeau-Sutre et al., 2022a), the presence of
a chest drain that is actually implemented only after the diagnosis and
not before (Oakden-Rayner et al., 2020) and skin markings associated
with melanoma detection (Winkler et al., 2019). More generally, failure
to generalize is often due to the fact that the data sets used for training
are not representative of clinical routine. In medical imaging, this is
particularly problematic because imaging devices, acquisition param-
eters and, more generally, the setting within which the acquisition is
performed, are major sources of variability. Within a given research
data set, such sources of variability are controlled, up to a certain
point. However, it has been shown that machine learning can identify
data sets (Wachinger et al., 2021). In clinical routine, acquisition
settings are largely uncontrolled making the translation from research
data particularly difficult. Furthermore, the difficulty of translation to
clinical routine goes beyond the medical imaging field (Futoma et al.,
2020). It has for example been demonstrated when predicting acute
kidney injury (Davis et al., 2017), heart failure (Wessler et al., 2017)
or mortality from electronic health records (Singh et al., 2022).

Trustworthy medical machine learning is an increasingly important
topic. However, there is still a need to raise awareness on this multi-
faceted issue. Methodological researchers have a tendency to often use
the same research data sets. In the field of dementia, hundreds of ma-
chine learning papers have been published using ADNI (Rathore et al.,
2017; Ebrahimighahnavieh et al., 2020; Ansart et al., 2021). Unfortu-
nately, comparatively, only little research has been made using clinical
routine data. Furthermore, while benchmarks and challenges are very
valuable, they are often not representative enough of the clinical real-
ity. There is thus a need to have more representative benchmarks (Varo-
quaux and Cheplygina, 2022). More generally, it is necessary that
researchers in medical image computing are not only interested in
building new models for diagnosis or prognosis but also in addressing
9

the challenges of their performance on realistic data. Awareness is
also necessary among clinicians. In particular, it is important that they
are trained to understand problems such as shortcut learning (Geirhos
et al., 2020), so that they can be aware of the limitations of machine
learning tools. Finally, it is also our role, as scientists, to engage with
the general public about such topics. Indeed, it is essential that patients
are not only aware of these problems but can also contribute to shaping
unbiased machine learning systems for healthcare.

Our study has the following limitations. Unlike in research studies,
the diagnosis may not be trustworthy as it is assigned using ICD-10
codes, which could be a source of bias. Indeed, in the French healthcare
system, they are assigned during hospitalization by the clinical depart-
ment for the billing of the expenses. In addition, ICD-10 codes do not
undergo quality control and it is likely that mistakes occur when enter-
ing the codes. These limitations of the diagnostic labels may hamper the
performance of the classifiers. In order to have more reliable diagnostic
labels, it would be necessary to use information from medical reports.
This could be done by medical experts but this is time consuming and
may not scale up to large populations. Another option is to use natural
language processing but it may also lead to errors. Other limitations
concern the composition of the clinical data set: There is a part of
arbitrariness in the way we defined the three groups. For example, in
the dementia class we included just the two most common causes of de-
mentia but other causes exist and they may also lead to brain atrophy.
In addition, we limited the size of the dementia category by deciding to
only consider patients with no multiple codes and whose code did not
change over time. This decision was mainly motivated by the unrelia-
bility of the ICD-10 codes which may vary depending on the hospital
service or the person in charge of attributing them. We assumed that a
stable and unique code would be more reliable. In addition, we decided
to select patients belonging to NDL and NDNL matching by age/sex the
class of dementia: This has further reduced the size of our data set, even
if the main limitation was the size of the dementia class, but it was the
easier way to obtain a data set not biased by these two cofactors.

Due to all the choices we have made, we have reduced the sample
size of the data set. Further evaluations should be done to assess
whether the performance of the classifiers could improve over the
present work by adding more subjects in the training. Finally, we
have limited our experimental settings to the use of standard machine
learning approaches (linear SVM or standard CNN classifiers). More
sophisticated approaches (e.g. Lian et al., 2018; Li et al., 2018; Hett
et al., 2018; Coupé et al., 2012; Liu et al., 2012; Tong et al., 2014; Suk
et al., 2017; Basaia et al., 2019; Wee et al., 2019; Hett et al., 2021) have
been proposed in the literature which, on research data, resulted in
higher classification accuracies than those obtained with the standard
techniques used in the present work. In the context of our work, one
of the most important limiting factors was the amount of time needed
for training a CNN model in the closed environment of the clinical
data warehouse (about 24 h for one CNN model for 50 epochs). This
was one of the motivations for relying on standard models. Another
motivation was that we believed it was important to first study the be-
havior of standard, widely-used, techniques. Future work could assess
whether more sophisticated techniques, which have achieved better
results on research data, could also lead to improvements in the context
of heterogeneous clinical data sets. To improve the reproducibility,
we extensively reported implementation details, software/OS versions,
repositories and commit numbers as recommended by Kennedy et al.
(2019). However, the reproducibility remains limited by the fact that,
as previously mentioned, the data must remain within the hospital
network. Still, we believe that, given the information we have provided,
other researchers who would be granted access to the hospital data
warehouse for that purpose by the AP-HP Scientific and Ethics Board
would be able to reproduce the present work.

Overall, our results highlight the challenges for translation of CAD
systems from research to clinical routine. A major result of this study
is uncovering the strong influence of biases coming from image hetero-

geneity. We specifically studied the case of gadolinium injection and
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image quality but other sources of biases such as image resolution,
sequence parameters or scanner type could exist. They could in turn
induce Clever Hans effects on the CAD systems if they are correlated
with the diagnosis of interest. This highlights the need for automatic
quality control tools in order to identify the various sources of biases
as well as for homogenization tools that could remove these biases.
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Acknowledgments

The research was done using the Clinical Data Warehouse of the
Greater Paris University Hospitals. The authors are grateful to the mem-
bers of the AP-HP WIND and URC teams, and in particular Stéphane
Bréant, Florence Tubach, Jacques Ropers, Antoine Rozès, Camille
Nevoret, Christel Daniel, Martin Hilka, Yannick Jacob, Julien Dubiel,
Cyrina Saussol and Rafael Gozlan. They would also like to thank the
‘‘Collégiale de Radiologie of AP-HP’’ as well as, more generally, all the
radiology departments from AP-HP hospitals.

The research leading to these results has received funding from the
Abeona Foundation (project Brain@Scale), from the French govern-
ment under management of Agence Nationale de la Recherche as part
of the ‘‘Investissements d’avenir’’ program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence
Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6).

Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Insti-
tutes of Health Grant U01 AG024904) and DOD ADNI (Department of
Defense award number W81XWH-12-2-0012). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imag-
ing and Bioengineering, and through generous contributions from the
following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discov-
ery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharma-
ceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La
Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research
& Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition Therapeu-
tics. The Canadian Institutes of Health Research is providing funds
to support ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California
Institute for Research and Education, and the study is coordinated
by the Alzheimer’s Therapeutic Research Institute at the University of
Southern California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

Apprimage study group

Olivier Colliot, Ninon Burgos, Simona Bottani, Sophie Loizillon 1

idier Dormont 1,2, Samia Si Smail Belkacem, Sebastian Ströer 2

Nathalie Boddaert 3

Farida Benoudiba, Ghaida Nasser, Claire Ancelet, Laurent Spelle 4

Hubert Ducou-Le-Pointe5
Catherine Adamsbaum6

Marianne Alison7

Emmanuel Houdart8
Robert Carlier 9,17

Myriam Edjlali9
Betty Marro10,11
10
Lionel Arrive10
Alain Luciani12
Antoine Khalil13
Elisabeth Dion14

Laurence Rocher15
Pierre-Yves Brillet16
Paul Legmann, Jean-Luc Drape 18

Aurélien Maire, Stéphane Bréant, Christel Daniel, Martin Hilka, Yan-
nick Jacob, Julien Dubiel, Cyrina Saussol, Rafael Gozlan 19

Florence Tubach, Jacques Ropers, Antoine Rozès, Camille Nevoret 20

Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm,
NRS, AP-HP, Hôpital de la Pitié Salpêtrière, Inria, Aramis project-team, F-
5013, Paris, France
AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, F-

5013, Paris, France
AP-HP, Hôpital Necker, Department of Radiology, F-75015, Paris, France
AP-HP, Hôpital Bicêtre, Department of Radiology, F-94270, Le Kremlin-

icêtre, France
AP-HP, Hôpital Armand-Trousseau, Department of Radiology, F-75012, Paris,
rance
AP-HP, Hôpital Bicêtre, Department of Pediatric Radiology, F-94270, Le

remlin-Bicêtre, France
AP-HP, Hôpital Robert-Debré, Department of Radiology, F-75019, Paris,

rance
AP-HP, Hôpital Lariboisière , Department of Neuroradiology, F-75010, Paris,
rance
AP-HP, Hôpital Raymond-Poincaré, Department of Radiology, F-92380,

arches, France
0 AP-HP, Hôpital Saint-Antoine, Department of Radiology, F-75012, Paris,
rance
1 AP-HP, Hôpital Tenon, Department of Radiology, F-75020, Paris, France
2 AP-HP, Hôpital Henri-Mondor, Department of Radiology, F-94000, Créteil,
rance
3 AP-HP, Hôpital Bichat, Department of Radiology, F-75018, Paris, France
4 AP-HP, Hôpital Hôtel-Dieu, Department of Radiology, F-75004, Paris,
rance
5 AP-HP, Hôpital Antoine-Béclère, Department of Radiology, F-92140, Cla-
art, France

6 AP-HP, Hôpital Avicenne, Department of Radiology, F-93000, Bobigny,
France
17 AP-HP, Hôpital Ambroise Paré, Department of Radiology, F-92100 104,
Boulogne-Billancourt, France
18 AP-HP, Hôpital Cochin, Department of Radiology, F-75014, Paris, France
19 AP-HP, WIND department, F-75012, Paris, France
20 AP-HP, Unité de Recherche Clinique, Hôpital de la Pitié Salpêtrière,
Department of Neuroradiology, F-75013, Paris, France

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Competing financial interests unrelated to the present article: OC re-
ports having received consulting fees from AskBio and Therapanacea
and having received fees for writing a lay audience short paper from
Expression Santé. Members from his laboratory have co-supervised a
PhD thesis with myBrainTechnologies and with Qynapse. OC’s spouse
is an employee and holds stock-options of myBrainTechnologies. O.C.
holds a patent registered at the International Bureau of the World
Intellectual Property Organization (PCT/IB2016/0526993, Schiratti J-
B, Allassonniere S, Colliot O, Durrleman S, A method for determining
the temporal progression of a biological phenomenon and associated
methods and devices).

http://www.fnih.org


Medical Image Analysis 89 (2023) 102903S. Bottani et al.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.media.2023.102903.

References

Ansart, M., Epelbaum, S., Bassignana, G., Bône, A., Bottani, S., Cattai, T., Couronné, R.,
Faouzi, J., Koval, I., Louis, M., et al., 2021. Predicting the progression of mild
cognitive impairment using machine learning: A systematic, quantitative and
critical review. Med. Image Anal. 67, 101848.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26 (3), 839–851.
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic

image registration with cross-correlation: evaluating automated labeling of elderly
and neurodegenerative brain. Med. Image Anal. 12 (1), 26–41.

Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C., 2014. The insight
ToolKit image registration framework. Front. Neuroinf. 8, 44.

Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., Filippi, M.,
Initiative, A.D.N., et al., 2019. Automated classification of Alzheimer’s disease
and mild cognitive impairment using a single MRI and deep neural networks.
NeuroImage: Clin. 21, 101645.

Bidani, A., Gouider, M.S., Travieso-González, C.M., 2019. Dementia detection and
classification from MRI images using deep neural networks and transfer learning.
In: International Work-Conference on Artificial Neural Networks. Springer, pp.
925–933.

Böhle, M., Eitel, F., Weygandt, M., Ritter, K., 2019. Layer-wise relevance propagation
for explaining deep neural network decisions in MRI-based Alzheimer’s disease
classification. Front. Aging Neurosci. 11, 194.

Bottani, S., Burgos, N., Maire, A., Wild, A., Ströer, S., Dormont, D., Colliot, O., 2022a.
Automatic quality control of brain T1-weighted magnetic resonance images for a
clinical data warehouse. Med. Image Anal. 75, 102219.

Bottani, S., Thibeau-Sutre, E., Maire, A., Ströer, S., Dormont, D., Colliot, O., Burgos, N.,
2022b. Homogenization of brain MRI from a clinical data warehouse using contrast-
enhanced to non-contrast-enhanced image translation with U-Net derived models.
In: SPIE Medical Imaging 2022.

Bron, E.E., Klein, S., Papma, J.M., Jiskoot, L.C., Venkatraghavan, V., Linders, J.,
Aalten, P., De Deyn, P.P., Biessels, G.J., Claassen, J.A., et al., 2021. Cross-cohort
generalizability of deep and conventional machine learning for MRI-based diagnosis
and prediction of Alzheimer’s disease. NeuroImage: Clin. 31, 102712.

Burgos, N., Bottani, S., Faouzi, J., Thibeau-Sutre, E., Colliot, O., 2021. Deep learning
for brain disorders: from data processing to disease treatment. Brief. Bioinform. 22
(2), 1560–1576.

Chagué, P., Marro, B., Fadili, S., Houot, M., Morin, A., Samper-González, J., Beunon, P.,
Arrivé, L., Dormont, D., Dubois, B., et al., 2021. Radiological classification of
dementia from anatomical MRI assisted by machine learning-derived maps. J.
Neuroradiol. 48 (6), 412–418.

Chupin, M., Gérardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehéricy, S., Benali, H.,
Garnero, L., Colliot, O., 2009. Fully automatic hippocampus segmentation and
classification in Alzheimer’s disease and mild cognitive impairment applied on data
from ADNI. Hippocampus 19 (6), 579–587.

Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S., Pruessner, J.C., Allard, M.,
Collins, D.L., Alzheimer’s Disease Neuroimaging Initiative, et al., 2012. Scoring
by nonlocal image patch estimator for early detection of Alzheimer’s disease.
NeuroImage: Clin. 1 (1), 141–152.

Couvy-Duchesne, B., Faouzi, J., Martin, B., Thibeau-Sutre, E., Wild, A., Ansart, M.,
Durrleman, S., Dormont, D., Burgos, N., Colliot, O., 2020. Ensemble learning of
convolutional neural network, support vector machine, and best linear unbiased
predictor for brain age prediction: ARAMIS contribution to the predictive analytics
competition 2019 challenge. Front. Psychiatry 11.

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O.,
Chupin, M., Benali, H., Colliot, O., 2011. Automatic classification of patients with
Alzheimer’s disease from structural MRI: a comparison of ten methods using the
ADNI database. NeuroImage 56 (2), 766–781.

Daniel, C., Salamanca, E., 2020. Hospital databases. In: Healthcare and Artificial
Intelligence. Springer, pp. 57–67.

Davis, S.E., Lasko, T.A., Chen, G., Siew, E.D., Matheny, M.E., 2017. Calibration drift
in regression and machine learning models for acute kidney injury. J. Am. Med.
Inform. Assoc. 24 (6), 1052–1061.

Ebrahimighahnavieh, M.A., Luo, S., Chiong, R., 2020. Deep learning to detect
Alzheimer’s disease from neuroimaging: A systematic literature review. Comput.
Methods Programs Biomed. 187, 105242.

Falahati, F., Westman, E., Simmons, A., 2014. Multivariate data analysis and machine
learning in Alzheimer’s disease with a focus on structural magnetic resonance
imaging. J. Alzheimer’s Dis. 41 (3), 685–708.

Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C., Initiative, A.D.N., et al., 2008.
Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional
pattern classification, predict subsequent cognitive decline. Neuroimage 39 (4),
1731–1743.
11
Farooq, A., Anwar, S., Awais, M., Rehman, S., 2017. A deep CNN based multi-
class classification of Alzheimer’s disease using MRI. In: 2017 IEEE International
Conference on Imaging Systems and Techniques. IST, IEEE, pp. 1–6.

Futoma, J., Simons, M., Panch, T., Doshi-Velez, F., Celi, L.A., 2020. The myth of
generalisability in clinical research and machine learning in health care. Lancet
Digit. Health 2 (9), e489–e492.

Geirhos, R., Jacobsen, J.H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., Wich-
mann, F.A., 2020. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2
(11), 665–673.

Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Ni-
ethammer, M., Dubois, B., Lehéricy, S., Garnero, L., et al., 2009. Multidimensional
classification of hippocampal shape features discriminates Alzheimer’s disease and
mild cognitive impairment from normal aging. Neuroimage 47 (4), 1476–1486.

Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P.,
Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., Handwerker, D.A., Hanke, M.,
Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B.N., Nichols, T.E., Pellman, J.,
Poline, J.B., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J.A.,
Varoquaux, G., Poldrack, R.A., 2016. The brain imaging data structure, a format
for organizing and describing outputs of neuroimaging experiments. Sci. Data 3
(1), 1–9.

Hett, K., Ta, V.T., Manjón, J.V., Coupé, P., Alzheimer’s Disease Neuroimaging Initiative,
et al., 2018. Adaptive fusion of texture-based grading for Alzheimer’s disease
classification. Comput. Med. Imaging Graph. 70, 8–16.

Hett, K., Ta, V.-T., Oguz, I., Manjón, J.V., Coupé, P., Alzheimer’s Disease Neuroimaging
Initiative, et al., 2021. Multi-scale graph-based grading for Alzheimer’s disease
prediction. Med. Image Anal. 67, 101850.

Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M.K., Johnson, S.C., Alzheimer’s
Disease Neuroimaging Initiative, et al., 2009. Spatially augmented LPboosting
for AD classification with evaluations on the ADNI dataset. Neuroimage 48 (1),
138–149.

Jónsson, B.A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L.M., Walters, G.B., Gudb-
jartsson, D., Stefansson, H., Stefansson, K., Ulfarsson, M., 2019. Brain age prediction
using deep learning uncovers associated sequence variants. Nat. Commun. 10 (1),
1–10.

Kennedy, D.N., Abraham, S.A., Bates, J.F., Crowley, A., Ghosh, S., Gillespie, T.,
Goncalves, M., Grethe, J.S., Halchenko, Y.O., Hanke, M., et al., 2019. Everything
matters: the ReproNim perspective on reproducible neuroimaging. Front. Neuroinf.
1.

Klöppel, S., Peter, J., Ludl, A., Pilatus, A., Maier, S., Mader, I., Heimbach, B., Frings, L.,
Egger, K., Dukart, J., et al., 2015. Applying automated MR-based diagnostic
methods to the memory clinic: a prospective study. J. Alzheimer’s Dis. 47 (4),
939–954.

Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D.,
Fox, N.C., Jack, Jr., C.R., Ashburner, J., Frackowiak, R.S., 2008. Automatic
classification of MR scans in Alzheimer’s disease. Brain 131 (3), 681–689.

Koikkalainen, J., Rhodius-Meester, H., Tolonen, A., Barkhof, F., Tijms, B., Lem-
stra, A.W., Tong, T., Guerrero, R., Schuh, A., Ledig, C., Rueckert, D., Soininen, H.,
Remes, A.M., Waldemar, G., Hasselbalch, S., Mecocci, P., van der Flier, W.,
Lötjönen, J., 2016. Differential diagnosis of neurodegenerative diseases using
structural MRI data. NeuroImage: Clin. 11, 435–449.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.-R., 2019.
Unmasking Clever Hans predictors and assessing what machines really learn. Nat.
Commun. 10 (1), 1–8.

Li, F., Liu, M., Alzheimer’s Disease Neuroimaging Initiative, et al., 2018. Alzheimer’s
disease diagnosis based on multiple cluster dense convolutional networks. Comput.
Med. Imaging Graph. 70, 101–110.

Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C., 2016. The first step for
neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264,
47–56.

Lian, C., Liu, M., Zhang, J., Shen, D., 2018. Hierarchical fully convolutional network for
joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI.
IEEE Trans. Pattern Anal. Mach. Intell. 42 (4), 880–893.

Liu, M., Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging Initiative, et al.,
2012. Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60 (2),
1106–1116.

Ma, D., Lu, D., Popuri, K., Wang, L., Beg, M.F., Alzheimer’s Disease Neuroimaging Ini-
tiative, et al., 2020. Differential diagnosis of frontotemporal dementia, Alzheimer’s
disease, and normal aging using a multi-scale multi-type feature generative ad-
versarial deep neural network on structural magnetic resonance images. Front.
Neurosci. 14, 853.

Manera, A.L., Dadar, M., Van Swieten, J.C., Borroni, B., Sanchez-Valle, R., Moreno, F.,
Laforce, Jr., R., Graff, C., Synofzik, M., Galimberti, D., et al., 2021. MRI data-
driven algorithm for the diagnosis of behavioural variant frontotemporal dementia.
J. Neurol. Neurosurg. Psychiatry 92 (6), 608–616.

Misra, C., Fan, Y., Davatzikos, C., 2009. Baseline and longitudinal patterns of brain
atrophy in MCI patients, and their use in prediction of short-term conversion to
AD: results from ADNI. Neuroimage 44 (4), 1415–1422.

https://doi.org/10.1016/j.media.2023.102903
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb1
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb2
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb3
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb3
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb3
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb3
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb3
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb4
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb4
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb4
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb5
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb6
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb7
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb7
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb7
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb7
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb7
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb8
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb8
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb8
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb8
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb8
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb9
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb10
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb11
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb11
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb11
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb11
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb11
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb12
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb13
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb14
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb15
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb16
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb17
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb17
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb17
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb18
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb18
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb18
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb18
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb18
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb19
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb19
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb19
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb19
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb19
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb20
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb20
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb20
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb20
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb20
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb21
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb22
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb22
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb22
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb22
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb22
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb23
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb23
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb23
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb23
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb23
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb24
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb24
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb24
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb24
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb24
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb25
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb26
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb27
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb27
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb27
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb27
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb27
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb28
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb28
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb28
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb28
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb28
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb29
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb30
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb31
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb32
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb33
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb33
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb33
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb33
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb33
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb34
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb35
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb35
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb35
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb35
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb35
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb36
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb36
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb36
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb36
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb36
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb37
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb37
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb37
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb37
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb37
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb38
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb38
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb38
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb38
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb38
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb39
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb39
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb39
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb39
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb39
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb40
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb41
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb42
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb42
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb42
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb42
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb42


Medical Image Analysis 89 (2023) 102903S. Bottani et al.
Morin, A., Samper-Gonzalez, J., Bertrand, A., Ströer, S., Dormont, D., Mendes, A.,
Coupé, P., Ahdidan, J., Lévy, M., Samri, D., Hampel, H., Dubois, B., Teichmann, M.,
Epelbaum, S., Colliot, O., 2020. Accuracy of MRI classification algorithms in
a tertiary memory center clinical routine cohort. J. Alzheimer’s Dis. 74 (4),
1157–1166.

Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C., 2020. Hidden stratification
causes clinically meaningful failures in machine learning for medical imaging.
In: Proceedings of the ACM Conference on Health, Inference, and Learning. pp.
151–159.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Platero, C., López, M.E., Carmen Tobar, M.d., Yus, M., Maestu, F., 2019. Discriminating
Alzheimer’s disease progression using a new hippocampal marker from T1-weighted
MRI: The local surface roughness. Human Brain Mapp. 40 (5), 1666–1676.

Punjabi, A., Martersteck, A., Wang, Y., Parrish, T.B., Katsaggelos, A.K., 2019. Neu-
roimaging modality fusion in Alzheimer’s classification using convolutional neural
networks. PLoS One 14 (12), e0225759.

Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C., 2017. A review on
neuroimaging-based classification studies and associated feature extraction methods
for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548.

Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai, O., Fontanella, S.,
Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A.,
Moreau, T., Samper-González, J., Teichmann, M., Thibeau–Sutre, E., Vaillant, G.,
Wen, J., Wild, A., Habert, M.-O., Durrleman, S., Colliot, O., 2021. Clinica: An
open source software platform for reproducible clinical neuroscience studies. URL
https://hal.inria.fr/hal-02308126.

Samper-González, J., Burgos, N., Bottani, S., Fontanella, S., Lu, P., Marcoux, A.,
Routier, A., Guillon, J., Bacci, M., Wen, J., Bertrand, A., Bertin, H., Habert, M.-
O., Durrleman, S., Evgeniou, T., Colliot, O., 2018. Reproducible evaluation of
classification methods in Alzheimer’s disease: Framework and application to MRI
and PET data. NeuroImage 183, 504–521.

Singh, H., Mhasawade, V., Chunara, R., 2022. Generalizability challenges of mortality
risk prediction models: A retrospective analysis on a multi-center database. PLOS
Digit. Health 1 (4), e0000023.

Sohn, B.K., Yi, D., Seo, E.H., Choe, Y.M., Kim, J.W., Kim, S.G., Choi, H.J., Byun, M.S.,
Jhoo, J.H., Woo, J.I., et al., 2015. Comparison of regional gray matter atrophy,
white matter alteration, and glucose metabolism as a predictor of the conversion
to Alzheimer’s disease in mild cognitive impairment. J. Korean Med. Sci. 30 (6),
779–787.

Spasov, S., Passamonti, L., Duggento, A., Lio, P., Toschi, N., Initiative, A.D.N., et al.,
2019. A parameter-efficient deep learning approach to predict conversion from mild
cognitive impairment to Alzheimer’s disease. Neuroimage 189, 276–287.

Suk, H.-I., Lee, S.-W., Shen, D., Alzheimer’s Disease Neuroimaging Initiative, et al.,
2017. Deep ensemble learning of sparse regression models for brain disease
diagnosis. Med. Image Anal. 37, 101–113.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the
inception architecture for computer vision. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2818–2826.

Thibeau-Sutre, E., Couvy-Duchesne, B., Dormont, D., Colliot, O., Burgos, N., 2022a.
MRI field strength predicts Alzheimer’s disease: a case example of bias in the ADNI
data set. In: 2022 IEEE 19th International Symposium on Biomedical Imaging. ISBI,
IEEE, pp. 1–4.
12
Thibeau-Sutre, E., Diaz, M., Hassanaly, R., Routier, A., Dormont, D., Colliot, O., Bur-
gos, N., 2022b. ClinicaDL: An open-source deep learning software for reproducible
neuroimaging processing. Comput. Methods Programs Biomed. 220, 106818.

Tong, T., Wolz, R., Gao, Q., Guerrero, R., Hajnal, J.V., Rueckert, D., Initiative, A.D.N.,
et al., 2014. Multiple instance learning for classification of dementia in brain MRI.
Med. Image Anal. 18 (5), 808–818.

Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.,
2010. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29 (6),
1310–1320.

Varoquaux, G., Cheplygina, V., 2022. Machine learning for medical imaging: method-
ological failures and recommendations for the future. NPJ Digit. Med. 5 (1),
48.

Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S.,
Boeve, B.F., Petersen, R.C., Jack, Jr., C.R., 2008. Alzheimer’s disease diagnosis in
individual subjects using structural MR images: validation studies. Neuroimage 39
(3), 1186–1197.

Wachinger, C., Rieckmann, A., Pölsterl, S., Initiative, A.D.N., et al., 2021. Detect and
correct bias in multi-site neuroimaging datasets. Med. Image Anal. 67, 101879.

Wallis, D., Buvat, I., 2022. Clever hans effect found in a widely used brain tumour
MRI dataset. Med. Image Anal. 102368.

Wee, C.-Y., Liu, C., Lee, A., Poh, J.S., Ji, H., Qiu, A., Initiative, A.D.N., et al., 2019.
Cortical graph neural network for AD and MCI diagnosis and transfer learning
across populations. NeuroImage: Clin. 23, 101929.

Wegmayr, V., Aitharaju, S., Buhmann, J., 2018. Classification of brain MRI with
big data and deep 3D convolutional neural networks. In: Medical Imaging
2018: Computer-Aided Diagnosis, Vol. 10575. International Society for Optics and
Photonics, p. 105751S.

Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S.,
Dormont, D., Durrleman, S., Burgos, N., Colliot, O., 2020. Convolutional neural
networks for classification of Alzheimer’s disease: Overview and reproducible
evaluation. Med. Image Anal. 101694.

Wessler, B.S., Ruthazer, R., Udelson, J.E., Gheorghiade, M., Zannad, F., Maggioni, A.,
Konstam, M.A., Kent, D.M., 2017. Regional validation and recalibration of clinical
predictive models for patients with acute heart failure. J. Am. Heart Assoc. 6 (11),
e006121.

Winkler, J.K., Fink, C., Toberer, F., Enk, A., Deinlein, T., Hofmann-Wellenhof, R.,
Thomas, L., Lallas, A., Blum, A., Stolz, W., et al., 2019. Association between surgical
skin markings in dermoscopic images and diagnostic performance of a deep learning
convolutional neural network for melanoma recognition. JAMA Dermatol. 155 (10),
1135–1141.

Wood, D.A., Kafiabadi, S., Al Busaidi, A., Guilhem, E., Montvila, A., Lynch, J.,
Townend, M., Agarwal, S., Mazumder, A., Barker, G.J., et al., 2022. Accurate
brain-age models for routine clinical MRI examinations. NeuroImage 118871.

World Health Organization, et al., 2007. International classification of diseases and
related health problems, 10th revision. http://www.who.int/classifications/apps/
icd/icd10online.

Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann, E.K., 2018.
Variable generalization performance of a deep learning model to detect pneumonia
in chest radiographs: a cross-sectional study. PLoS Med. 15 (11), e1002683.

http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb43
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb44
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb45
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb45
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb45
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb45
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb45
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb46
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb46
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb46
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb46
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb46
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb47
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb47
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb47
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb47
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb47
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb48
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb48
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb48
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb48
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb48
https://hal.inria.fr/hal-02308126
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb50
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb51
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb51
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb51
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb51
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb51
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb52
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb53
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb53
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb53
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb53
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb53
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb54
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb54
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb54
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb54
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb54
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb55
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb55
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb55
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb55
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb55
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb56
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb57
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb57
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb57
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb57
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb57
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb58
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb58
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb58
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb58
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb58
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb59
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb59
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb59
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb59
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb59
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb60
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb60
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb60
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb60
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb60
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb61
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb62
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb62
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb62
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb63
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb63
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb63
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb64
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb64
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb64
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb64
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb64
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb65
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb66
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb67
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb68
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb69
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb69
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb69
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb69
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb69
http://www.who.int/classifications/apps/icd/icd10online
http://www.who.int/classifications/apps/icd/icd10online
http://www.who.int/classifications/apps/icd/icd10online
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb71
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb71
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb71
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb71
http://refhub.elsevier.com/S1361-8415(23)00163-9/sb71

